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Abstract12

1. Both population abundances and chemical tracers are useful tools for studying13

consumer-resource interactions. Food web models parameterized with abundances are of-14

ten used to understand how interactions structure communities and to inform management15

decisions of complex ecological systems. Unfortunately, collecting abundance data to pa-16

rameterize these models is often expensive and time-consuming. Another approach is to17

use chemical tracers to estimate the proportional diets of consumers by relating the trac-18

ers in their tissues to those found in their food sources. Although tracer data are often19

inexpensive to collect, these diet proportions provide little information on the per-capita20

consumption rates of consumers. Here, we show how coupling these data sources leads to21

better estimates of consumption rates.22

2. Our modeling approach integrates traditional multispecies population abundance23

models with proportional diet estimates. We used simulations to determine whether inte-24

grated food web datasets were more informative than the standard abundance datasets and25

demonstrated the use of our integrated approach by estimating consumption rates of hump-26

back whales (Megaptera novaeangliae) in the western Gulf of Alaska using abundances27

coupled with stable isotopes as a tracer.28

3. Our simulations demonstrated that integrated models improved the ability to resolve29

alternative hypotheses about the functional response and yielded more precise parameter30

estimates relative to standard food web models. The integrated data approach was espe-31

cially informative under low sample sizes or high process variance. Our application of32

the integrated modeling approach to humpback whales indicated that fish averaged about33

25% of whale diets, though this proportion declined over the course of the study. We also34

found that traditional abundance model estimates of humpback whale consumption were35

non-estimable and that the integrated food web model led to estimable consumption rates.36

4. Our results show that integrating stable isotopes and abundance datasets provides37

an exciting way forward for parameterizing multispecies models in data-limited systems.38
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We expect that future developments of these integrated approaches will extend current food39

web theory by allowing ecologists to study predation dynamics over seasonal time scales40

and at the individual level.41

Keywords: integrated modeling | functional response | multispecies modeling | ecological42

tracers | stable isotopes | nonlinear time series | food web model43

Background44

Food web models allow ecologists to study how interspecific interactions drive the emergent45

complexity of communities (Thompson et al., 2012). These models have revealed important46

relationships between biodiversity and ecosystem stability (May, 1972) and have practical ap-47

plications for understanding the sensitivity of populations to the indirect effects of management48

decisions (Yodzis, 1998). Unfortunately, the difficulties inherent in parameterizing food webs49

limit both our ability to study the patterns of complex natural systems and the empirical appli-50

cations of these models.51

Collecting abundance data, which is commonly used to parameterize dynamic food web52

models (e.g., Ives et al., 2003), is time-intensive and costly, as both predator and prey must be53

surveyed. The sampled populations are also often a subset of all the relevant biotic and abiotic54

factors in the system. Standard abundance models rely on using correlations between abun-55

dances through time to infer consumption rates. This approach has the potential to misidentify56

the influence of factors such as unsampled populations and climate factors as direct interactions57

between the sampled populations. A classic example of this phenomenon is apparent compe-58

tition, in which two negatively correlated populations appear to be competing but instead are59

regulated by a consumer (Holt, 1977).60

Bioenergetics modeling is another approach sometimes used to obtain consumption rates61
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for multispecies models. This method uses routinely collected data to partition the energy ob-62

tained from food to an individual’s growth, metabolism, and waste products (Ney, 1993). In the63

few cases where validation of this approach is possible, estimates have routinely overestimated64

consumption, sometimes by several orders of magnitude (Chipps & Wahl, 2008). One previous65

study has coupled stable isotopes with bioenergetics models to determine prey consumption66

(Caut et al., 2006). This approach, while useful, suffered from similar issues as standard bioen-67

ergetics models. Thus it is not clear that the bioenergetics approach is currently capable of68

producing reliable consumption rates for multispecies models.69

Direct measurements of individual diet through the use of ecological tracers has proven to be70

a breakthrough in nutritional ecology (Phillips & Gregg, 2001; Galloway et al., 2015; Kartzinel71

et al., 2015). Stable isotopes, in particular, have been used to estimate the trophic position of72

species (Vander Zanden et al., 1999), the proportional diets of consumers (Phillips & Gregg,73

2001), and parameterize ecological networks (Yeakel et al., 2012). Unfortunately, ecological74

tracers such as stable isotopes have been of limited use for understanding food web dynamics as75

they only measure diet proportions, which contain information on relative consumption, rather76

than the per-capita consumption values necessary to model the effect of predators on their prey.77

In this study, we propose a new integrated modeling approach for parameterizing food webs.78

We show how to combine population abundance data collected at multiple trophic levels with79

proportional diets of consumers, derived from stable isotopes, to estimate the functional re-80

sponse of consumers. Combining multiple independent data sources mirrors integrated methods81

in population demography, which have successfully been used to parameterize complex models82

(Schaub et al., 2007). Our approach constrains consumption estimates to be consistent with83

both the observed population dynamics and diets thus leading to predictions that are consistent84

with empirical dynamics.85
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Methods86

We demonstrate our integrated modeling approach in two ways. First, we simulated the discrete-87

time dynamics of a consumer-resource interaction. We fit two types of models to these simu-88

lated datasets, abundance and integrated data models (described in detail below). This com-89

parison allowed us to investigate how well each of the data models performed in both model90

selection and parameter estimation. Second, we fit the abundance and integrated models to data91

collected on humpback whales (Megaptera novaeangliae) and their prey in the western Gulf of92

Alaska using continuous-time models. These continuous-time models illustrate how to account93

for isotopic turnover in tissues occurring due to tissue replacement.94

Models95

Dynamical models96

In this section, we describe two sets of models that can be used to describe how the processes of97

population growth and regulation as well as interspecific interactions drive community dynam-98

ics. The following section then describes how to connect these models to the data we collect.99

The first set of difference equations is used to simulate time series of population abundances100

and of proportional diets. Discrete-time models may not be biologically realistic for many101

predator-prey processes they are often reasonable approximations, and for simulation studies102

they have the additional advantage that they are fast to simulate. The second set of models are103

continuous-time models of predation that we fit to a dataset of humpback whales and their prey.104

We use these continuous models to highlight how to the incorporate isotopic turnover of tissues.105
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Our system of difference equations contain a predator (P ) and two prey (N1, N2):106

P (t + 1) =
[

ε1N1(t)
(

1 − e
−g1(P (t), N1(t), N2(t))

)

+ ε2N2(t)
(

1 − e
−g2(P (t), N1(t), N2(t))

)

+ P (t)e−µ
]

e
σP ZP (t)

N1(t + 1) =
[

r1N1(t)e
−s1N1(t)−g1(P (t), N1(t), N2(t))

]

e
σ1Z1(t)

N2(t + 1) =
[

r2N2(t)e
−s2N2(t)−g2(P (t), N1(t), N2(t))

]

e
σ2Z2(t)

.

(1)

The reproductive rate and strength of density dependence of each prey population is given by r107

and s, respectively. The density-independent mortality rate of the consumer is given by µ. Pop-108

ulations are subjected to process error at each time step, Z(t), drawn from a standard normal109

distribution scaled by σ, the standard deviation. This error can be interpreted as temporal vari-110

ation in the reproductive rate (Ferguson & Ponciano, 2015). The term, 1 − e−g(P (t), N1(t), N2(t)),111

is the probability that an individual in the prey population does not escape consumption, while112

the efficiency of converting prey to new enemies is given by ε. Here we examined discrete-time113

equivalents of the type I and type II functional response. For a discrete-time type I response114

, g(P (t), N1(t), N2(t)) is given by cP (t), where c is the per-capita consumption rate of the115

predator on the prey. For the type II response of the predator on the first prey population it is116

c1P (t)
1+c1h1N1(t)+c2h2N2(t)

(Mills & Getz, 1996) and the functional response for the second prey pop-117

ulation is given by g2(P (t), N1(t), N2(t)) = c2P (t)
1+c2h2N2(t)+c1h1N1(t)

. Parameters used to simulate118

system 1 are given in Table 1.119

A discrete-time system is appropriate for host-parasite interactions or predator-prey inter-120

actions when the sampling frequency is high relative to reproductive and consumption rates.121

However, continuous-time models may be more suitable for many other systems. We consider122

such a continuous-time process in our analysis of a data set of humpback whales and their prey123

(data described in Section ). This system is124
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Nfish

dt
= rfishNfish − cfishPNfish

Nzoo

dt
= rzooNzoo − czooPNzoo.

(2)

The growth rates of fish and zooplankton are given by rfish and rzoo, while the per-capita125

consumption rates of fish and zooplankton by whales are given by cfish. The yearly abundances126

of fish (Nfish), zooplankton (Nzoo), and whales (P ) We did not build an explanatory model127

of within-year changes in humpback whales (P ) because we assumed that this slow-growing128

population did not change throughout the feeding season and that changes between years may129

reflect factors other than limitation by prey, such as humpback whale’s relatively recent release130

from commercial harvest (Gabriele et al., 2017).131

Data models132

In this section, we describe how to fit food-web models using either abundance data or abun-133

dance data coupled with proportional diet data. Parameterizing these models with abundance134

data is a well-developed approach (see Ives et al., 2003; Koen-Alonzo & Yodzis, 2005), how-135

ever linking information about the proportional diets to these dynamics is novel. This link is136

achieved by understanding that the proportional diet is the total number of prey of a certain type137

consumed in a given time period relative to all of the predators consumption in that period. The138

number of consumed prey is given by the integral of the functional response.139

Our first data model was informed using only the time series of abundances. This abundance140

model assumed that the population abundance at each time step followed a lognormal proba-141

bility distribution representing fluctuations in the environment that were not accounted by our142

model. At each time step we conditioned abundance predictions on the previous time step, ex-143

cept for the first observation, which was only used to predict the second observation (following,144

Ferguson & Ponciano, 2014). In fitting the humpback whale dataset we also included the uncer-145
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tainty in estimated abundances (P , Nfish, and Nzoo) as observation error. The full specification146

of this state-space model is given in Appendix S1.147

Our second approach is an integrated data model that utilizes both the abundance and148

proportional diet data to inform the models. The estimated dietary proportion data is linked149

to abundances by recognizing that this proportion can be written in terms of the consumed150

prey predicted by the functional response in the dynamical model. For the first prey popula-151

tion in a discrete-time system with type I functional response this proportion is, p1(t + 1) =152

N1(t)(1−e−c1P (t))
N1(t)(1−e−c1P (t))+N2(t)(1−e−c2P (t))

. We are particularly interested in applying this model to pro-153

portional diet data obtained from stable isotopes, where we may also need to account for iso-154

topic turnover, the time required for the isotopic composition of an animal to reflect its diet155

(Vander Zanden et al., 2015). In this approach the predicted diet at time t + 1 is the integrated156

consumption of prey weighted by the isotopic turnover rate. This gives the diet proportion:157

p1(t + 1) =

∫ t+1

t
e−λ(1−t)f1(P (t), N1(t), N2(t)) dt

∫ t+1

t
e−λ(1−t)f1(P (t), N1(t), N2(t)) dt +

∫ t+1

t
e−λ(1−t)f2(P (t), N1(t), N2(t)) dt

,

(3)

where λ is the rate of isotopic turnover and the functions f1 and f2 are the functional responses158

of the predator for each of the two prey populations. When the turnover rate is very low such159

that λ ≈ 0 this integral is the average proportional diet over the survey period. As the turnover160

rate increases this becomes a weighted average where more recently consumed items are more161

important.162

We fit the predicted diet proportions to the observed diet proportions using a nonlinear163

logistic regression model with a mean given by the logit transform of the predicted proportion.164

The integrated log-likelihood is then the sum of the contributions from the logistic and the165
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abundance time series models.166

Simulation study167

We used simulated data generated from dynamical system 1 to test how informative the addi-168

tion of proportional diet data is for parameter estimation and the ability to select the generating169

model from a set of alternative hypotheses. We simulated data under each of the type I and type170

II functional responses and fit both types of functional response as competing hypotheses to171

the generated data. In these simulations, we assumed that isotopic turnover could be ignored.172

This assumption is safe to make in scenarios when the turnover rate of the sampled tissue is173

approximately zero over the sampling period in, for example, tissues such as hair that record174

yearly diet. It could also be safe to make this assumption when changes in abundance between175

sampling periods are small. We made this assumption primarily to reduce the amount of com-176

putation needed for these simulations but incorporating turnover will not change the relative177

performance of these models.178

Simulated time series were generated from system 1 for the type I and type II functional179

response using low (σ = 0.1), medium (σ = 0.25), and high (σ = 0.5) levels of process error,180

where we assumed the same value of σ for both prey and the predator populations. To generate181

datasets, we first simulated 500 time steps to ensure that the populations reach stationarity. We182

then selected sets of 10 to 100 observations from the end of the 500 samples, incrementing183

over this range by 10 to explore the effects of sample size on inference. For each combination184

of process variance/sample size/functional response we simulated 10,000 realizations of the185

process and fit the abundance and integrated data models to each dataset. We fit both type I and186

type II models to each simulated dataset. Models were fit in R using the nloptr package (Ypma,187

2015) using a two-stage optimization procedure. We first used the global dividing rectangles188

algorithm (Gablonsky & Kelley, 2001), following this up with the Nelder-Mead algorithm (Box,189
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1965) to achieve convergence.190

For each fitted dataset, we calculated the Bayesian Information Criterion (BIC) for the191

two competing functional response models to determine the most parsimonious model in the192

set (Burnham & Anderson, 2002). We then calculated the proportion of times that the gen-193

erating model was selected by BIC using each data model for each process variance/sample194

size/functional response combination. We also calculated the bias of parameter estimates on the195

log-scale for each process variance/sample size/functional response combination. We note that196

the number of time points sampled is not equal to the sample size. For the abundance model197

with ten-time points, the total sample size is the 9-time points predicted by the model for each198

of the three populations sampled for a total sample size of 27. The integrated model has the199

sample size of the abundance data set plus the number of diet proportions used. For a sample200

of 10-time points, this corresponds to a total sample size of 36 (27 abundance samples and nine201

diet proportion samples). All data and code used for these analyses are provided on the Dryad202

Digital Repository (doi:10.5061/dryad.5q136q2).203

Empirical study: the functional response of humpback whales204

We used the abundance and integrated models to understand the impact of humpback whales on205

their prey populations in the western Gulf of Alaska. These migratory baleen whales play a ma-206

jor role in structuring this ecosystem through predation (Witteveen et al., 2006, 2012; Wright207

et al., 2015). Our dataset consisted of annual humpback abundances and the relative abun-208

dances of their zooplankton and fish prey estimated from past surveys (Wynne & Witteveen,209

2015; Witteveen et al., 2015). We also estimated the proportional contributions of these major210

food sources to the diets of whales each year using the IsotopeR stable isotope mixing model211

(Hopkins & Ferguson, 2012). In particular, we used carbon (13C/12C) and nitrogen (15N/14N)212

stable isotope ratios (expressed as δ13C and δ15N) from individual whales (n=114), fish (n=211),213
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and zooplankton (n=36) to estimate dietary parameters. We then estimated consumption rates214

of humpback whales using both the standard abundance model and the integrated model and215

compared the results.216

Wynne & Witteveen (2015) estimated whale abundances from photographs of individual217

whales taken during annual vessel surveys from 2004, 2005, 2007, and 2012-2014. We used the218

estimated abundances from the eastern portion of the study area because the relative densities219

of zooplankton and fish were also collected in this region during vessel surveys using acoustic220

volume backscatter; the relative frequency response was used to estimate relative zooplankton221

and fish densities (Wynne & Witteveen, 2015; Witteveen et al., 2015). These densities, de-222

scribed here as population indices, are proportional to the total relative abundance of each prey223

population.224

We estimated the proportional assimilated diets of humpback whales using carbon (13C/12C)225

and nitrogen (15N/14N) stable isotope ratios (expressed as δ13C and δ15N) derived from 119 skin226

samples (114 individuals) collected from adults (n = 80), juveniles (n = 4), and whales of un-227

known age (but not calves that were dependent on their mothers; n = 35). Skin samples of228

whales were collected using a pneumatic-dart system from June through September between229

2004-2014 (Wright et al., 2015). We also used stable isotope values for fish (capelin, Mal-230

lotus villosus: n = 84; Pacific herring, Clupea pallasii: n = 85; Alaska pollock, Theragra231

chalcogramma: n = 42) collected during vessel surveys in 2012 in areas with the highest232

acoustic backscatter densities. Sampling was done using a mid-water trawl net with 22 mm233

mesh cod-end liner (following Witteveen et al., 2012). Zooplankton were also collected using234

a 75 cm diameter twin-ring net (500/1000 µmesh) and separated into taxonomic groups though235

not identified to species (e.g., euphausiids and copepods) (euphausiids: n = 14; copepods:236

n = 22) as reported in Witteveen & Wynne (2016).237

We added stable isotope discrimination factors (small offsets of stable isotope values be-238
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tween dietary sources and animal tissues) to the isotope values of each sampled food. In par-239

ticular, we added the mean discrimination factors for skin of fin whales that fed on krill (∆13C240

= 1.3 ± 0.4; ∆15N = 2.8 ± 0.3; (Borrell et al., 2012)) to the stable isotope values of sampled241

zooplankton, and discrimination factors for killer whale (Orcinus orca) and bottlenose dolphin242

(Tursiops truncates) that fed on fish diets (∆13C = 2.4; ∆15N = 3.2, (Caut et al., 2011)) to the243

stable isotope values of fish sampled in this study.244

We used IsotopeR (Ferguson & Hopkins, 2013) to estimate the isotopic mixing space and245

the proportional diets (fish and zooplankton) of whales each year. We ran 3 MCMC chains with246

a burn-in of 103 draws followed by 104 draws from the posterior. We checked graphical and247

other diagnostic output for evidence of convergence. We reported the mean, 1 SD, median, and248

95% credible interval for each marginal posterior density distribution (i.e., proportional dietary249

contribution) for each major food source (Dryad Digital Repository DOI here upon acceptance).250

Stable isotope mixing models are used to measure the proportional contributions of di-251

gestible biomass from each prey item to consumers (Phillips, 2012), whereas population dy-252

namics are often defined in terms of abundances. To get the proportional diet on the same253

scale as the per-capita consumption, we converted the per-capita consumption rate from a mea-254

sure of consumed prey individuals to a measure of consumed biomass. First, we calculated255

the consumed biomass of each prey item by multiplying the total number of consumed prey256

(C) between observations
(

C =
∫ t+1

t
e−λ(1−x)f(P (x), N1(x), N2(x)) dx

)

by the average prey257

biomass (b). We then corrected the number consumed by the digestibility (D) to get the con-258

sumed biomass of each prey item D · b · C. Prey digestion of zooplankton was assumed to259

be 93%, consistent with minke whales (Balaenoptera acutorostrata) (Martensson et al., 1994),260

and 100% for fish, as measured in some species of dolphin (Sekiguchi & Best, 1997).261
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Parameter estimation262

We used both the abundance and integrated data models to estimate the consumption of prey263

by humpback whales. We used n-step predictions (where n is the number of years between264

observations) because annual data were not available for the whole study period. We used 1-265

step predictions in 2005, 2013, and 2014; a 2-step prediction for 2007; and a 5-step prediction266

for 2012. We fit the type I functional response defined in system 2 to the abundances and as-267

sumed that predicted populations followed a lognormal distribution. To incorporate the known268

uncertainty in estimated whale, fish, and zooplankton densities, we used a Bayesian model. All269

estimation was done in JAGS (Plummer, 2012) and code and data to reproduce the analysis are270

available on the Dryad Digital Repository (doi:10.5061/dryad.5q136q2).271

In the integrated model, we incorporated isotopic turnover of humpback whales using equa-272

tion 3. Past work has suggested that equilibration of stable isotopes from food into whale skin273

can take anywhere from 7 days (Witteveen et al., 2011; Todd et al., 1997) to 2 months (Hicks274

et al., 1985). We assumed that these turnover times were equal to the half-life (ln(2)/λ) of the275

tissue and ran our models with both λ = 7/365 and λ = 60/365.276

Results277

Simulation study278

Under all simulation conditions, integrated models performed better than abundance models279

at selecting the generating model (Figure 2). The ability to choose the generating model was280

dependent on the sample size, process variance, and generating model. As expected, we found281

that higher variation in the data tended to reduce the ability to detect the generating model,282

whereas larger sample sizes increased capacity to select the generating model. An interest-283
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ing exception to this pattern was the poor performance of the abundance model with type II284

functional response under low sample size and process variance. In this case model selection285

performed worse than more variable scenarios because there was not enough variation in the286

data to observe fluctuations in the functional response. When the generating model was the287

type I functional response, there was little difference between the data models with the gener-288

ating model selected over 96% of the time for all simulation conditions (Figure 2a). When the289

generating model was the type II functional response, there was a large difference between the290

data models’ ability to select the generating model. For example, in a sample of 10-time points291

with low process variance the abundance data model selected the generating model 26% of the292

time while the integrated data model selected the generating model 80% of the time (Figure 2b).293

As the sample size increased, the performance differential of the data models decreased.294

We report results of estimator bias under the type II functional response and high process295

variance (Figure 3). We note that the other simulation conditions led to similar conclusions,296

though performance differences decreased with lower process variance. We found that estima-297

tor bias was less for the integrated data model than the abundance data model with the same298

number of time points sampled (Figure 3) except for a couple of cases discussed below. The299

estimates of the half-saturation coefficient for prey 1 (h1) and both of the consumption rates300

(c1, c2) improved the most under the integrated model. Interesting h2 did not improve with301

the integrated model even though we saw improvements in h1 and c2. We also detected im-302

provements in a number parameters that were not directly related to predator diet (e.g., r1, s1,303

Figure 3), even though the integrated model did not contain any direct information about these304

parameters. These improvements occur because well-estimated functional response parameters305

allow for the identification of other population parameters.306

We did find some significant issues in the sampling distributions of the diet efficiencies and307

predator mortality terms (ε1, ε2, µ). The sampling distribution of these parameters was mul-308
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timodal (Figure S1), though we found that the primary mode of the sampling distribution did309

appear to be a reasonable estimator. It is likely that multimodality occurs because these pa-310

rameters are additive functions of the predator population in system 1; therefore, they can be311

difficult to identify statistically. Approaches to deal with this issue are to place biologically312

plausible constraints on the range of diet efficiencies or to determine reasonable starting points313

for parameter values from the literature then use local optimization instead of a global algo-314

rithm. We performed a small set of secondary simulations that indicate reasonable constraints315

on parameters removes the multimodal behavior and lead to estimates that behave similarly to316

others in the study.317

Empirical Study: Trophic dynamics of humpback whales318

Abundance and proportional diets319

Abundance estimates of the humpback whale population ranged from 1665 whales in 2004 to320

551 in 2012 (Figure 4), with a coefficient of variation of 0.41 over the course of the study.321

The population indices for fish and zooplankton were also highly variable with coefficients of322

variation of 0.69 and 1.08, respectively (Figure 4).323

The stable isotope values measured from whale skin, fish, and zooplankton data and sources324

are illustrated in Figure 1. Using Kruskal–Wallis tests, we found that unlike δ15N (H = 7.792,325

df = 5, p = 0.1681), δ13C values were different among years (H = 49.3747, df = 5,326

p < 0.005; Figure S1). Interestingly, δ13C values seemed to decrease in a step-wise fash-327

ion (Figure S2). We also learned that both δ13C and δ15N values were lower for zooplankton328

(δ13C: −18.2± 1.0; δ15N : 11.9± 0.9) than fish (δ13C: −15.4± 0.9; δ15N : 15.7± 1.0) (Figure329

1). We used these stable isotope data to estimate the diets of whales through time using Iso-330

topeR and found that the annual mean contribution of fish varied substantially in the diets of331
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whales from 45% in 2004 to 4% in 2014 (Figure 4 inset).332

Parameter estimation333

The abundance data model had 15 observations for a system with six parameters. Incorporating334

diet data with the integrated data model increased the number of observations by 40% to 20 ob-335

servations. Here, we report estimates assuming that the tissue half-life is 7 days, though we note336

increasing upper limit on the estimate of turnover 60 days does not alter the point estimates. We337

estimated the consumption rate of fish (cfish) in our abundance model as ĉfish = 5.06 · 10−10
338

versus the estimate from the integrated model of ĉfish = 3.85 · 10−13. Both estimates have cred-339

ible intervals that extend to 0 (Figure 5a) and are thus weakly estimable (sensu Ponciano et al.,340

2012), with a flat posterior distribution. The estimates of the consumption rate on zooplankton341

for the abundance data model estimated ĉzoo = 1.34 · 10−10 versus 1.10 · 10−6 for the inte-342

grated data model. Incorporating the diet estimates in the integrated model led to this parameter343

becoming estimable (Figure 5b).344

Discussion345

We developed a framework to parameterize food web models by integrating proportional diet346

and population abundance data. The primary advantage of using proportional diet information347

is that it provides an independent measure of consumption, a quantity that dynamical models348

have estimated by relying on correlations between populations. The simulation component of349

our study demonstrated that the integrated approach yields more precise parameter estimates350

and can better distinguish competing between hypotheses relative to standard abundance mod-351

els. Because the integrated food web model uses more data than conventional methods im-352

proved performance was not surprising; however, we were surprised by the substantial degree353
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of improvement in the integrated models for datasets with low sample size and low process vari-354

ance or moderate sample sizes with high process variance (Figure 2). Our empirical example355

highlighted how incorporating diet information can resolve parameters that cannot be precisely356

estimated using abundance data (Figure 5).357

Based on the results of our stable isotope analysis, around 25% of the humpback whale diet358

is composed of fish, though this can vary from over 40% in some years to under 5% in oth-359

ers (Figure 4). Previous diet estimates, calculated using stable isotope mixing models, found a360

larger proportion of fish in humpback whale diets (Witteveen et al., 2012; Wright, 2014). We361

attribute this discrepancy to different analytical procedures. For instance, we used skin discrim-362

ination factors for marine mammals that fed on these food sources (fish and krill), rather than363

those associated with other tissues and foods. We also structured our mixing models differently364

than past studies by grouping sampled foods into two main food sources whereas Witteveen365

et al. (2012) estimated the diets of whales using 2-isotope systems and either 5 or 9 sources.366

Although we applied the best analytical practices available in our analysis of whale diets,367

several limitations may have influenced the results of our case study. First, our model did not368

explicitly account for the migratory life history of whales. Stable isotopes from food acquired369

in the winter breeding ground could be influencing the measurements made in Alaska if the370

isotopic turnover time is on the long end of the estimated range (between 7 and 60 days).371

In addition, we did not include any direct interactions between fish and zooplankton due to372

the constraint imposed by having a small sample size. Finally, our analysis assumed that373

the isotope values of whale’s prey did not significantly vary through time. It is known that374

the isotope values of fishes can vary considerably from year to year, sometimes as much as375

up to 2%� in Nitrogen and Carbon (Kurle et al., 2011). Accounting for such variation will376

be a significant step in refining the estimates obtained here. Thus, while we do not consider377

our models sufficiently sophisticated for making accurate predictions of system dynamics, our378
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analysis showed that integrative food web models do have significant advantages over standard379

abundance approaches.380

We focused this study on three-species trophic interactions. When applying integrated food381

web models to larger food webs, stable isotope methods may be unable to uniquely estimate382

the dietary proportions of generalist consumers (Hopkins & Kurle, 2016). This nonestimability383

occurs when the number of sources exceeds the number of isotope tracers commonly used in384

ecology (2H, 15O, 13C, 15N, and 34S) by more than one (Phillips & Gregg, 2003). Including385

informative priors in the mixing model (Chiaradia et al., 2014) or using prey abundance data to386

weight source estimates (Yeakel et al., 2011) have both been used to circumvent this analytical387

limitation. Another promising method is to supplement stable isotopes with fatty acid data,388

a technique that can extend the number of ecological tracers for systems with many dietary389

sources (Galloway et al., 2015).390

As a general rule of thumb for designing integrated multispecies studies, we advise sampling391

both abundance and tissues at a frequency defined by the population with the fastest turnover.392

This study design will generate datasets with sufficient fluctuations in density that the response393

to predation can be observed without increasing effort by surveying populations that have not394

had time to respond to the effects of predation. In cases where the stable isotopes are being395

collected retroactively, e.g., through museum specimens, we suggest starting with asensitivity396

analysis of the multispecies abundance model to determine which interactions are the most397

critical to answering your scientific question. Then place most effort on collecting and analyzing398

the appropriate tissues to inform those interactions.399

We believe that integrated food web models show promise for ecologists interested in study-400

ing new facets of multispecies dynamics. The ability of ecological tracers to detect differences401

in consumption at the individual level could lead to new models that explore the impacts of402

group, or even individual heterogeneity on food web dynamics. For example, integrated data403
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models could be used to explore the heterogeneity of diet over the life history of individuals.404

This heterogeneity may play a substantial role in compartmentalizing feeding interactions and405

thus buffering the propagating effects of a single population going extinct (Stouffer & Bas-406

compte, 2011) and thus in determining community stability (May, 2001; Ferguson et al., 2012),407

though there is currently very little data available to test this hypothesis.408

It is difficult to accurately determine the functional response without experiments (e.g.,409

Arditi et al., 1991) or extensive behavioral field studies (e.g., Fryxell et al., 2007; Novak &410

Wootton, 2008). However, the functional response determines a number of key ecosystem411

properties such as whether trophic cascades occur and how systems will respond to enrich-412

ment (Arditi & Ginzburg, 2012). Here we show that combining existing data sources using413

integrated methods is one way forwards for accurately parameterizing complex, empirical food414

web dynamics. New methods to directly observe ecological interactions may allow ecologists415

to accurately model the functional response and lead to new insights into the role of predation416

in food webs.417
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Figure 1: Isotope values (δ13C, δ15N ) derived from the skin of humpback whales and their prey

(corrected for isotopic discrimination). Each color denotes a different sampling year and error

bars denote 2 standard deviations.
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Figure 2: Proportion of correct functional response selections made using BIC for each data

model (solid lines for abundance data model, dashed lines for integrated data models). The

x-axis is given in terms of the number of sample points used for the estimation, where samples

occur yearly. In panel a the generating model is a type I functional response and panel b is for

when the generating model is a type II functional response.
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Figure 3: Estimator bias under a type II functional response with high process variance. Pa-

rameters ε2, σ2, and σp are not reported as their behavior is similar to ε1 and σ1. Bias is given

in terms of the difference between the log parameter values, the x-axis is given in terms of the

number of sample points used for the estimation, where samples occur yearly.
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Figure 4: Estimated abundances of humpback whales and their prey from 2004 to 2014. Points

denote mean population index estimates, error bars are one standard error from the mean. Pro-

portional diets of whales (inset) are estimated using stable isotopes, thus, are expressed in terms

of assimilated biomass. Each point in the inset gives the posterior mean diet estimate and error

bars are one posterior standard deviation from the mean.
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Figure 5: Posterior distribution of interaction rates between humpback whales and their prey.

Abundance model in grey, integrated model in blue. Posteriors are rescaled for comparability.
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Table 1: Parameters used for simulations.

Parameter symbol value

conversion efficiency

type I and II response ε1, ε2 0.6, 0.6

consumption rate

type I response c1, c2 0.0002, 0.00024

type II response c1, c2 0.001, 0.003

half-saturation coefficient

type II response h1, h2 5, 5

predator mortality rate µ 0.1

prey growth rate r1, r2 1.8, 1.8

strength of prey density dependence s1, s2 0.001, 0.001

process error

type I and II response σP , σ1, σ2 varied
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